Calculation of magnetic exchange interactions in Mott-Hubbard systems.
نویسندگان
چکیده
An efficient method of computing magnetic exchange interactions in systems with strong correlations is introduced. It is based on a magnetic force theorem that evaluates linear response due to rotations of magnetic moments and uses a generalized spectral density functional framework allowing us to explore several approximations ranging from local density functional to exact diagonalization based dynamical mean field theory. Applications to spin waves and magnetic transition temperatures of 3d metal mono-oxides as well as high-T(c) superconductors are in good agreement with experiment.
منابع مشابه
Breakdown of the Luttinger sum - rule at the Mott - Hubbard transition in the one - dimensional t 1 − t 2 Hubbard model .
– We investigate the momentum distribution function near the Mott-Hubbard transition in the one-dimensional t1 − t2 Hubbard model (the zig-zag Hubbard chain), with the density-matrix renormalization-group technique. We show that for strong interactions the Mott-Hubbard transition occurs between the metallic-phase and an insulating dimerized phase with incommensurate spin excitations, suggesting...
متن کاملMott transition in kagomé lattice Hubbard model.
We investigate the Mott transition in the kagomé lattice Hubbard model using a cluster extension of dynamical mean field theory. The calculation of the double occupancy, the density of states, and the static and dynamical spin correlation functions demonstrates that the system undergoes the first-order Mott transition at the Hubbard interaction U/W approximately 1.4 (W:bandwidth). In the metall...
متن کاملMultiorbital Hubbard model in infinite dimensions: Quantum Monte Carlo calculation
Using the quantum Monte Carlo technique we compute thermodynamics and spectra for the orbitally degenerate Hubbard model in infinite spatial dimensions. With increasing orbital degeneracy we find in the one-particle spectra broader Hubbard bands ~consistent with increased kinetic energy!, a narrowing Mott gap, and increasing quasiparticle spectral weight. Hund’s rule exchange coupling decreases...
متن کاملMagnetic and superfluid transitions in the one-dimensional spin-1 boson Hubbard model.
Recent progress in experiments on trapped ultracold atoms has made it possible to study the interplay between magnetism and superfluid-insulator transitions in the boson Hubbard model. We report on quantum Monte Carlo simulations of the spin-1 boson Hubbard model in the ground state. For antiferromagnetic interactions favoring singlets, we present exact numerical evidence that the superfluid-in...
متن کاملMagnetic order and dynamics in an orbitally degenerate ferromagnetic insulator.
Neutron scattering was used to determine the spin structure and the magnon spectrum of the Mott-Hubbard insulator YTiO3. The magnetic structure is complex, comprising substantial G-type and A-type antiferromagnetic components in addition to the predominant ferromagnetic component. The magnon spectrum, on the other hand, is gapless and nearly isotropic. We show that these findings are inconsiste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 97 26 شماره
صفحات -
تاریخ انتشار 2006